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Consistent discretization for simulations of flows
with moving generalized curvilinear coordinates
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SUMMARY

We develop a consistent discretization of conservative momentum and scalar transport for the numerical
simulation of flow using a generalized moving curvilinear coordinate system. The formulation guarantees
consistency between the discrete transport equation and the discrete mass conservation equation due to grid
motion. This enables simulation of conservative transport using generalized curvilinear grids that move
arbitrarily in three dimensions while maintaining the desired properties of the discrete transport equation
on a stationary grid, such as constancy, conservation, and monotonicity. In addition to guaranteeing
consistency for momentum and scalar transport, the formulation ensures geometric conservation and
maintains the desired high-order time accuracy of the discretization on a moving grid. Through numerical
examples we show that, when the computation is carried out on a moving grid, consistency between the
discretized scalar advection equation and the discretized equation for flow mass conservation due to grid
motion is required in order to obtain stable and accurate results. We also demonstrate that significant
errors can result when non-consistent discretizations are employed. Copyright q 2009 John Wiley &
Sons, Ltd.

Received 28 August 2008; Revised 10 February 2009; Accepted 12 February 2009

KEY WORDS: finite-volume method; scalar transport; incompressible flow; CWC; curvilinear coordinate

1. INTRODUCTION

A number of problems in computational fluid dynamics (CFD) require flow calculations on moving-
grid systems. Grid movement usually is employed for simulations that employ adaptivity designed
to resolve strong gradients in the flow as the solution progresses or simulations involving moving
boundaries. Typical examples of the former case include simulations of shock waves or the transport

∗Correspondence to: Y. J. Chou, Department of Civil and Environmental Engineering, Stanford University, Stanford,
CA 94305-4020, U.S.A.

†E-mail: yjchou@stanford.edu

Contract/grant sponsor: Publishing Arts Research Council; contract/grant number: 98-1846389
Contract/grant sponsor: ONR Coastal Geosciences Program; contract/grant number: N00014-05-1-0177

Copyright q 2009 John Wiley & Sons, Ltd.



CONSISTENT DISCRETIZATION FOR SIMULATIONS OF FLOWS 803

of sharp scalar fronts, while examples of the latter case can be found in flutter simulation of wings,
turbomachinery, or some geophysical flow applications (e.g. free-surface flows and flows over
dynamic bed forms). Typically, when flow problems are solved on dynamic meshes, grid motion
cannot be based solely on a naive flow-following algorithm [1], since severe grid deformation
can result particularly in flows with high strain rates. Therefore, in a generalized moving-grid
flow simulation, grid position must be exactly prescribed such that grid quality is guaranteed at
each time step. In problems that involve boundary movement, desired grid quality is automatically
satisfied by the grid generation function at each time step. For problems in which grids move
based on the solution itself, grid motion is specified through monitor functions which guarantee
grid quality while resolving as much of the fine flow features as possible.

While grid quality is important for accurate flow simulations, it is also important to maintain
consistency between discrete fluid mass transport due to grid motion and the discrete transport
equations for momentum and scalars. This implies that the same method that is used to compute
the divergence of the flux of momentum and the scalars must be used to compute the divergence of
fluid mass in a moving grid if one desires to maintain the properties of the fixed-grid discretization.
This consistency condition is known as consistency with continuity (CWC) and is an essential
requirement for conservation on fixed grids and has been discussed by various authors [2–5] in
the context of higher-order conservative transport schemes. For non-moving grids, CWC implies
that the discrete divergence operater that is used for the continuity equation must be identical to
the discrete divergence operater that is used for the divergence of the flux of some scalar. It is
straightforward to ensure CWC with non-moving Cartesian grids, but special care must be taken
when developing CWC schemes on moving grids. For example, Gross et al. [6] studied the CWC
condition for the simulation of free-surface flow on Cartesian grids and observed large errors and
strongly non-monotonic behavior when CWC is violated, despite the use of monotonic transport
schemes designed for fixed grids. They showed how consistent discretizations can be employed if
special care is taken when discretizing the scalar transport equation.

According to Lin and Rood [3], a convenient definition of CWC is, a discretization of the
advection equation is consistent with continuity if, given a spatially uniform scalar field as an
initial datum, and a general flow field, the discretized scalar advection equation reduces to the
discretized continuity equation, which applies whether or not the grid geometry varies in time.
This statement is similar to that described for the discrete geometric conservation law (DGCL) in
the arbitrary Lagrangian–Eulerian scheme, which states that the discretized equation on moving
meshes must be able to preserve a constant solution such that while substituting a constant solution
field into the transport equation, the discrete version of the geometric conservation law (GCL) is
recovered. The GCL was first addressed by Thomas and Lombard [7] in 1978, in which a first-
order accurate in time method was presented for solving flow problems on dynamic meshes while
preserving grid geometry. More recently, derivations have shown that the DGCL is a sufficient
condition for achieving first-order time accuracy [8] but not a sufficient condition for obtaining
the design accuracy of the underlying time-integration scheme when it is greater than one [9].
It has been demonstrated that the DGCL is a sufficient and necessary condition for preserving
the nonlinear stability of the underlying time-integration scheme for the finite-volume formulation
[10], but not necessarily for the finite element formulation [11, 12]. As demonstrated in the present
paper, failure to satisfy CWC would result in the violation of the DGCL, thus the stability properties
derived in References [10–12] for the DGCL also apply to CWC in the present context.

In this study we develop a method to discretize the equations of motion and transport that is
consistent with the discrete continuity equation on a moving generalized curvilinear coordinate grid.
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It is demonstrated that violation of CWC is equivalent to the violation of DGCL, thereby intro-
ducing excessive mass. We develop a technique to calculate the grid velocities that satisfies
the CWC condition and maintains the second-order accuracy of the original fixed-grid code in
three-dimensional space. To this end, a moving-grid algorithm along with the CWC discretization
procedure is applied to a three-dimensional Navier–Stokes code to allow for the simulation of
incompressible flow on a generalized moving curvilinear coordinate grid. CWC and non-CWC are
demonstrated with examples that include pure grid advection in a three-dimensional deforming
computational domain and flow induced by an oscillating boundary.

2. MATHEMATICAL FORMULATION

2.1. Governing equations

The equation governing the conservation of a certain physical property � on a fixed Cartesian grid
is given by

��

�t
+ �

�x j
(�u j )=S (1)

where the Einstein summation convention is assumed, j =1,2,3,u j is the j th component of the
Cartesian velocity and S represents a source or sink. In this paper, hydrodynamic and scalar trans-
port problems are studied, and hence Equation (1) represents conservation of momentum if �=
ui (i=1,2,3), mass of fluid if �=�=fluid density, or scalar mass if �=C=scalar concentration.
When a moving-grid simulation is carried out in a curvilinear coordinate system, through the trans-
formation between the fixed Cartesian coordinate system (x1, x2, x3) and the moving curvilinear
coordinate system (�1,�2,�3) [13], the transformed curvilinear coordinate equations in strong
conservation law form [14] reads

�
�t

(J−1�)+ �
��m

(�Um)− �
��m

(�Ug,m)= S (2)

Here

J−1=det

(
�xi
�� j

)
(3)

is the inverse of the Jacobian of transformation and represents the ratio of the volume of a
computational cell in physical space to its volume in computational space, the contravariant volume
flux is

Um = J−1 ��m
�x j

u j (4)

and the contravariant volume flux associated with the grid velocity ug, j is given by

Ug,m = J−1 ��m
�x j

ug, j = J−1 ��m
�x j

dxg, j
dt

(5)
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Therefore, the set of equations representing conservation of fluid mass, momentum, and scalar
mass in a generalized moving curvilinear coordinate are given by, respectively,

�
�t

(J−1�)+ �
��m

(�Um)− �
��m

(�Ug,m)=0 (6)

�
�t

(J−1ui )+ �
��m

(uiUm)− �
��m

(uiUg,m)= Sui (7)

and

�
�t

(J−1C)+ �
��m

(CUm)− �
��m

(CUg,m)= Sc (8)

where Sui comprises the effects of pressure, viscous stresses, and body forces while Sc comprises
diffusion and any inflow or outflow of scalar mass. For incompressible flow, Equation (6) reduces to

�
�t

(J−1)+ �Um

��m
− �Ug,m

��m
=0 (9)

This equation shows that the generalized curvilinear coordinate version of the GCL is given by

�
�t

(J−1)+ �Ug,m

��m
=0 (10)

which, if satisfied, implies continuity of fluid in generalized curvilinear coordinates,

�Um

��m
=0 (11)

2.2. Finite-volume discretization

Employing the finite-volume formulation, the discrete two-dimensional form of the scalar advection
Equation (8) on a moving grid is given by

d

dt
(J−1|i, jCi, j ) = − 1

��i, j
(Ci+1/2, jUi+1/2, j −Ci−1/2, jUi−1/2, j )

− 1

��i, j
(Ci, j+1/2Vi, j+1/2−Ci, j−1/2Vi, j−1/2)

+ 1

��i, j
(Ci+1/2, jUg,i+1/2, j −Ci−1/2, jUg,i−1/2, j )

+ 1

��i, j
(Ci, j+1/2Vg,i, j+1/2−Ci, j−1/2Vg,i, j−1/2)+Sc,i, j (12)

where subscripts i and j are grid indices in the �- and �-directions, respectively, �� and �� are the
distances between the curvilinear coordinate grid lines, and the subscript 1

2 indicates the face value
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Figure 1. The control volume of a cell (i, j) and the associated face fluxes in the
curvilinear coordinate system.

of the cell, as shown in Figure 1. Assuming that ��i, j =��i, j =1, in the absence of diffusion,
sources or sinks, Equation (12) reduces to

d

dt
(J−1|i, jCi, j ) = −(Ci+1/2, jUi+1/2, j −Ci−1/2, jUi−1/2, j )

−(Ci, j+1/2Vi, j+1/2−Ci, j−1/2Vi, j−1/2)

+(Ci+1/2, jUg,i+1/2, j −Ci−1/2, jUg,i−1/2, j )

+(Ci, j+1/2Vg,i, j+1/2−Ci, j−1/2Vg,i, j−1/2) (13)

For the sake of simplicity, in this paper we discuss the discretized equations in their two-dimensional
forms, although addition of the third dimension is straightforward. Equation (13) is a spatially
discretized advection equation and can be further discretized in time based on the desired temporal
accuracy and stability. For the case of a fixed grid, numerical properties associated with discretiza-
tion techniques for the scalar advection equation have been extensively studied and the desired
numerical properties can be achieved using different discretization techniques as discussed in the
literature (see, for example, [5, 15]). However, for the case of a moving grid, as will be discussed
in this paper, the accuracy of the numerical discretization of Equation (13) depends highly on the
accuracy of the discretized version of the fluid mass conservation Equation (9).

Applying the same finite-volume discretization technique from Equation (13) to the fluid mass
conservation Equation (9) gives

d

dt
(J−1|i, j ) = (Ug,i+1/2, j −Ug,i−1/2, j )+(Vg,i, j+1/2−Vg,i, j−1/2)

−(Ui+1/2, j −Ui−1/2, j )−(Vi, j+1/2−Vi, j−1/2) (14)

Typical CFD codes for incompressible flow employ some form of a pressure projection method at
each time step (e.g. [16–18]) to ensure continuity at the next time step, such that, on a curvilinear
grid, at least to the accuracy of the method, local continuity is satisfied, vis.

Ui+1/2, j −Ui−1/2, j +Vi, j+1/2−Vi, j−1/2=0 (15)
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With local continuity satisfied, volume conservation (14) reduces to the discretized GCL

d

dt
(J−1|i, j )=(Ug,i+1/2, j −Ug,i−1/2, j )+(Vg,i, j+1/2−Vg,i, j−1/2) (16)

or discrete space conservation law in some contexts (e.g. [19]).

3. DISCRETE GEOMETRIC CONSERVATION

3.1. GCL with the finite-volume formulation

Grid motion is typically accomplished by moving the vertices of a finite-volume grid and computing
the grid velocities and metrics that change with the new grid coordinates. While grid metrics and
velocities can be computed independently from the actual finite-volume form of the geometric
conservation equation, CWC will not be satisfied unless Equation (16) is identically satisfied, and
this places constraints on how each of the metrics is computed. For example, if the vertices of
a finite-volume, time-dependent grid are given by (x(t)i±1/2, j±1/2, y(t)i±1/2, j±1/2), then the cell
volume J−1(t)|i, j can be calculated from the grid vertices to second order in space with

J−1(t)|ni, j =

∣∣∣∣∣∣∣∣∣
�x(t)
��

�x(t)
��

�y(t)
��

�y(t)
��

∣∣∣∣∣∣∣∣∣
i, j

≈

∣∣∣∣∣∣∣∣
��x(t)i, j+1/2+��x(t)i, j−1/2

2

��x(t)i+1/2, j +��x(t)i−1/2, j

2
��y(t)i, j+1/2+��y(t)i, j−1/2

2

��y(t)i+1/2, j +��y(t)i−1/2, j

2

∣∣∣∣∣∣∣∣ (17)

where ��()=()i+1/2−()i−1/2 and ��()=() j+1/2−() j−1/2. The calculation of the cell volume by
Equation (17) assumes the parallelogram shape for each cell in which the edge length in each
direction is approximated by the center value in that direction (see Appendix A). However, as
shown in Appendix A, in the finite-volume framework, the volume obtained by Equation (17) is
not identical to that obtained with a time advancement of Equation (16) while it is identical to
that obtained with the finite-difference framework. Thus, in order to ensure geometric conservation
with the finite-volume framework and the consistency condition (discussed later), other than the
first time step in which J−1|0i, j is obtained with Equation (17), J−1|n+1

i, j is updated by integrating

in time Equation (16) over the interval [tn, tn+1] with

J−1|n+1
i, j = J−1|ni, j +

∫ tn+1

tn
(Ug,i+1/2, j (�)−Ug,i−1/2, j (�))+(Vg,i, j+1/2(�)−Vg,i, j−1/2(�))d�

= J−1|ni, j +(Ũg,i+1/2, j −Ũg,i−1/2, j )�t+(Ṽg,i, j+1/2− Ṽg,i, j−1/2)�t (18)
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where

Ũ = 1

�t

∫ tn+1

tn
U (�)d�

and �t= tn+1− tn . In order to ensure a positive cell volume, Equation (18) is subject to the
constraints

(Ũg,i+1/2, j −Ũg,i−1/2, j )�t>−J−1|ni, j and (Ṽg,i, j+1/2− Ṽg,i, j−1/2)�t>−J−1|ni, j (19)

Violation of condition (19) is the case in which cells overlap and do not share unique vertices. In the
case that the coordinates are determined a priori at each time step, one can always construct grid
points that are uniquely defined in the computational domain, thus satisfying condition (19). This
property holds for flow–structure interaction problems in which grid points are determined based
on structure behavior at each time step. However, in the case that grids move based on the flowfield,
it is possible to violate Equation (19) when the system is strongly nonlinear, such as in shocks. In
such a case, as we have mentioned in the introduction, one can employ a grid monitor function
to ensure that grid coordinates are always uniquely defined, thus avoiding violation of condition
(19). Therefore, in the remainder of this paper, it is reasonable to assume that Equation (19) is
always satisfied.

It should be noted that since the cell volume is updated with the finite-volume formulation using
Equation (18), discrete geometric conservation is guaranteed both locally and globally, since the
summation of Equation (18) over all cells in the domain guarantees that

Vn+1
T −Vn

T=∑
i, j

(J−1|n+1
i, j − J−1|ni, j )=0 (20)

where Vn
T is the total volume of the domain at time step n.

3.2. GCL in two-dimensional space

In the previous section, we show how to update the cell volume with the finite-volume formu-
lation, which conserves cell geometry, both locally and globally. However, when Equation (18)
is discretized in time, special care must be taken to guarantee discrete conservation of geometry.
A simple example is shown in Figure 2 to illustrate this issue, which arises when Equation (18) is
fully discretized in multi-dimensional space. In order to demonstrate this in a more general sense,
we rewrite the contravariant volume fluxes (U , V ) in a two-dimensional computational domain
(�, �) as

U = �y
��

u− �x
��

v and V =−�y
��

u+ �x
��

v (21)

Equation (16) can thus be rewritten as

d

dt
(J−1|i, j ) =

(
�y
��

ug− �x
��

vg

)
i+1/2, j

−
(

�y
��

ug− �x
��

vg

)
i−1/2, j

+
(

−�y
��

ug+ �x
��

vg

)
i, j+1/2

−
(

−�y
��

ug+ �x
��

vg

)
i, j−1/2

(22)
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Figure 2. Depiction of grid deformation in: (a) one dimension and (b, c) two dimensions, in which
the dotted thick lines indicate the edges of the old cell while the solid thick lines indicate edges of
the new cell. The shaded area is the cell volume (area) calculated from the equation below it. This
illustrates that in the 1-D case, the new cell volume (area) can be directly updated using the grid
velocity, but in the 2-D case, the intermediate edge length, �xn+1/2 and �yn+1/2, must be used in

order to obtain the actual volume change.

where the first two terms on the right-hand side correspond to the volume change due to grid
motion in the �-direction, while the last two terms correspond to the volume change due to grid
motion in the �-direction. All terms in Equation (22) are time-dependent, and the metric quantities
in this equation (e.g. �x/��) represent the face lengths associated with the respective normal grid
velocities in each curvilinear coordinate direction (�, �). These metrics are exact at each time step
because the faces of the finite-volume cells are assumed to be linear.

Consider the assumption of a constant grid velocity field (Un
g,i, j , V

n
g,i, j ) between t= tn and

tn+1, which has been done in numerous related studies (e.g. [20–22]). Under this assumption, the
forward Euler (FE) discretization of (16) is given by

J−1|n+1
i, j = J−1|ni, j +�t (Un

g,i+1/2, j −Un
g,i−1/2, j )+�t (V n

g,i, j+1/2−V n
g,i, j−1/2) (23)

As all terms on the right-hand side of Equation (23) are calculated at time step n, geometry is not
conserved since the real volume change of each cell �J−1|ni, j = J−1|n+1

i, j − J−1|ni, j is not equal to
the RHS of Equation (23). As illustrated in Figures 2(a) and (b), the difference between one- and
two-dimensional grid movement is that, in the two-dimensional case, the actual area change of
each cell should include the area change (Ug,i, j�t)×(Vg,i, j�t), which is omitted if Equation (23)
is employed. This geometric conservation issue associated with multi-dimensional moving-grid
simulations has been addressed by Demirdzic and Peric [19], and they proposed an alternative grid
velocity to satisfy conservation of cell geometry, which is given by (in the x–y plane)

ug = �yn+1+�yn

2�yn
�x

�t
and vg = �xn+1+�xn

2�xn
�y

�t
(24)
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such that changes in cell geometry are given identically by

�J =(�ynug+�xnvg)�t (25)

which conserves grid geometry when the grid moves in two-dimensional space. One alternative
approach to solving this problem is to employ the operator splitting scheme, in which the cell
volume is updated in different coordinate directions subsequently at each time step. Although the
formulation for the cell volume update can maintain the actual cell volume with operator splitting,
the splitting procedure for physical scalar transport would result in violation of the consistency
condition, as demonstrated by Leonard et al. [4]. As an example, the splittling procedure for a
scalar field (Ci, j ) in the x–y plane is written as

C∗
i, j = Cn

i, j +uni−1/2, jC
n
i−1/2, j −uni+1/2, jC

n
i+1/2, j

Cn+1
i, j = C∗

i, j +vni, j−1/2C
∗
i, j−1/2−vni, j+1/2C

∗
i, j+1/2

(26)

Assuming a constant concentration field S in space, this becomes

S∗ = Sn+uni−1/2, j S
n−uni+1/2, j S

n

Sn+1 = S∗+vni, j−1/2S
∗−vni, j+1/2S

∗ (27)

and combining these two equations together to eliminate the intermediate value S∗ results in

Sn+1 = Sn+(uni−1/2, j −uni+1/2, j +vni−1/2, j −vni+1/2, j )S
n

+(uni−1/2, jv
n
i, j−1/2−uni+1/2, jv

n
i, j+1/2−uni−1/2, jv

n
i, j+1/2+uni+1/2, jv

n
i, j−1/2)S

n (28)

The CWC condition requires that Sn+1= Sn throughout the simulation. Since the second term on
the RHS of Equation (28) is zero due to continuity, the only way to ensure CWC is if the third
term on the RHS is identically zero. However, in general this is not true, thus violating CWC.
Since the splitting procedure in m dimensions requires m−1 intermediate solutions, splitting is
also not desirable when higher-order multi-step methods are employed.

In this study, to maintain GCL and to avoid the problems associated with operator splitting, we
employ a cell volume updating procedure that uses intermediate metric quantities to approximate
the volume change. Since the metric quantities are exact at each time step because the finite-volume
faces are linear and the coordinates of the finite-volume vertices at the new time step are known
a priori, we use the intermediate metric quantities, which are defined by the average of the metrics
at time step n and time step n+1. As an example, for �x/�� we use

�x
��

∣∣∣∣n+1/2

= 1

2

(
�x
��

∣∣∣∣n+ �x
��

∣∣∣∣n+1
)

(29)

The components of the grid velocity (ug , vg) for each cell are calculated from the movement of
the mid-point of each face ((�x,�y)i±1/2, j or i, j±1/2), which is computed via an average of the
movement of the end points of each face. Using these assumptions, if a constant grid velocity is
assumed between t= tn and tn+1 for each cell face, then Equation (18) becomes

J−1|n+1
i, j = J−1|ni, j +�t (Un+1/2,n

g,i+1/2, j −Un+1/2,n
g,i−1/2, j )+�t (V n+1/2,n

g,i, j+1/2−V n+1/2,n
g,i, j−1/2) (30)
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where

Un+1/2,n
g,i±1/2, j =

�y
��

∣∣∣∣n+1/2

i±1/2, j
ung,i±1/2, j −

�x
��

∣∣∣∣n+1/2

i±1/2, j
vng,i±1/2, j (31)

and

V n+1/2,n
g,i, j±1/2= −�y

��

∣∣∣∣n+1/2

i, j±1/2
ung,i, j±1/2+ �x

��

∣∣∣∣n+1/2

i, j±1/2
vng,i, j±1/2 (32)

and the Cartesian grid velocities in Equations (31) and (32) are given by

ug,i±1/2, j = �x |i±1/2, j

�t
, vg,i±1/2, j = �y|i±1/2, j

�t

ug,i, j±1/2 = �x |i, j±1/2

�t
, vg,i, j±1/2= �y|i, j±1/2

�t

(33)

The difference between Equations (23) and (30) is illustrated in Figure 2. Both the present formu-
lation (Equations (30)–(33)) and those of Demirdzic and Peric [19] (Equations (24) and (25))
conserve grid geometry, but the associated Cartesian grid velocities (Equations (24) and (33))
are different. In the present study, the use of the intermediate metric quantities (Equation (29))
eliminates the dependence of the approximated grid velocity on grid geometry, which can be
demonstrated by comparing Equations (24) and (33). Moreover, Equations (30)–(33) can easily be
extended to three dimensions (see Appendix B).

In order to distinguish between the metric and physical quantities, we introduce the geometric
operator Gn

�,i, j (·) which represents the metric quantity evaluated at location (i , j) in the �-direction
at time step t= tn . For example,

Gn+1/2
�,i+1/2, j (u

nCn)= ��

�x

∣∣∣∣n+1/2

i+1/2
(uC)ni+1/2, j +

��

�y

∣∣∣∣n+1/2

i+1/2, j
(vC)ni+1/2, j =Un+1/2,n

i+1/2, j C
n
i+1/2, j (34)

and Equation (30) can thus be rewritten as

J−1|n+1
i, j = J−1|ni, j +�t (Gn+1/2

�,i+1/2, j (u
n
g)−Gn+1/2

�,i−1/2, j (u
n
g))

+�t (Gn+1/2
�,i, j+1/2(v

n
g)−Gn+1/2

�,i, j−1/2(v
n
g)) (35)

Unlike Equation (23), this equation ensures geometric conservation both locally and globally.

4. CONSISTENT DISCRETIZATION OF SCALAR TRANSPORT

In Section 2.2, finite-volume discretizations were formulated for the conservation laws of scalar
and fluid in Equations (13) and (14), respectively. The face values in these equations can be
obtained from different interpolation schemes depending on the desired numerical properties, and
mass conservation for both fluid and scalar can be achieved in a straightforward manner. In a
fixed-grid simulation, �J−1/�t=0 and ug,i, j =0, and CWC is satisfied as long as, if the simulation
is started with an initial constant in space, the interpolation scheme that is used to interpolate face
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values in Equation (13) yields the same constant at each cell face during the simulation. This can
be demonstrated by substituting a constant concentration field into Equation (13), and the result
is the discrete continuity equation

(Ui+1/2, j −Ui−1/2, j )+(Vi, j+1/2−Vi, j−1/2)=0 (36)

which, for the moving-grid case, can be written as

(Gn+1/2
�,i+1/2, j (u

n)−Gn+1/2
�,i−1/2, j (u

n))+(Gn+1/2
�,i, j+1/2(v

n)−Gn+1/2
�,i, j−1/2(v

n))=0 (37)

It is important to note that grid motion is not necessarily dependent on fluid motion and can be
prescribed exactly prior to each time step, and the method by which it is calculated can conserve
grid geometry as was demonstrated in Section 3. Therefore, there is no stability constraint arising
from the discretization scheme for the GCL (Equation (16)) as long as constraint (19) is satisfied.
However, a stable discretization of the GCL that conserves grid geometry constrains the temporal
discretization of the scalar transport Equation (13), since the same temporal discretization technique
that is used for the discrete GCL must be used for scalar transport if CWC is to be achieved. In
what follows, we discuss examples of different consistent discretization techniques applied to the
GCL (16) and the transport Equation (13).

4.1. First-order forward Euler method

If Equation (35) is used to update the cell volume, CWC is satisfied only if the forward Euler (FE)
method is used as the temporal discretization for the scalar transport equation. That is, Equation
(13) must be discretized as

J−1|n+1
i, j Cn+1

i, j = J−1|ni, jCn
i, j −�t (Gn+1/2

�,i+1/2, j (u
nCn)−Gn+1/2

�,i−1/2, j (u
nCn))

−�t (Gn+1/2
�,i, j+1/2(v

nCn)−Gn+1/2
�,i, j−1/2(v

nCn))

+�t (Gn+1/2
�,i+1/2, j (u

n
gC

n)−Gn+1/2
�,i+1/2, j (u

n
gC

n))

+�t (Gn+1/2
�,i, j+1/2(v

n
gC

n)−Gn+1/2
�,i, j−1/2(v

n
gC

n)) (38)

CWC can be demonstrated by substituting the constant concentration field Ci, j =1 into
Equation (38), and subtracting Equation (35), which yields Equation (37). Although this discretiza-
tion is consistent, the temporal accuracy is only first order. To improve the temporal accuracy,
one can employ the second-order Adams–Bashforth (AB2) method to discretize Equation (13).
However, because the first-order approximation

ug,i, j =
xn+1
i, j −xni, j

�t
+O(�t) and vg,i, j =

yn+1
i, j − yni, j

�t
+O(�t) (39)

is employed for the grid velocity, the terms associated with the grid velocity in the scalar transport
equation must also be discretized in time using the FE method. The resulting discrete scalar
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transport equation is given by

J−1|n+1
i, j Cn+1

i, j = J−1|ni, jCn
i, j −�t[ 32 (Gn+1/2

�,i+1/2, j (u
nCn)−Gn+1/2

�,i−1/2, j (u
nCn))

− 1
2 (G

n+1/2
�,i+1/2, j (u

n−1Cn−1)−Gn+1/2
�,i−1/2, j (u

n−1Cn−1))]

−�t[ 32 (Gn+1/2
�,i, j+1/2(v

nCn)−Gn+1/2
�,i, j−1/2(v

nCn))

− 1
2 (G

n+1/2
�,i, j+1/2(v

n−1Cn−1)−Gn+1/2
�,i, j−1/2(v

n−1Cn−1))]

+�t (Gn+1/2
�,i+1/2, j (u

n
gC

n)−Gn+1/2
�,i+1/2, j (u

n
gC

n))

+�t (Gn+1/2
�,i, j+1/2(v

n
gC

n)−Gn+1/2
�,i, j−1/2(v

n
gC

n)) (40)

Since the higher-order temporal discretization is employed for the transport associated with the
physical velocity (u, v), the temporal accuracy is improved, but due to the grid transport terms
(containing ug , vg), Equation (40) is still first-order accurate in time. However, this is necessary for
CWC because any discretization other than FE for the grid transport terms in the scalar transport
equation would violate consistency. Violation of CWC can be demonstrated by discretizing the grid
transport terms in Equation (40) with AB2. Applying a constant concentration field and subtracting
Equation (37) yields

J−1|n+1
i, j = J−1|ni, j +�t[ 32 (Gn+1/2

�,i+1/2, j (u
n
g)−Gn+1/2

�,i−1/2, j (u
n
g))

− 1
2 (G

n+1/2
�,i+1/2, j (u

n−1
g )−Gn+1/2

�,i−1/2, j (u
n−1
g ))]

+�t[ 32 (Gn+1/2
�,i, j+1/2(v

n
g)−Gn+1/2

�,i, j−1/2(v
n
g))

− 1
2 (G

n+1/2
�,i, j+1/2(v

n−1
g )−Gn+1/2

�,i, j−1/2(v
n−1
g ))] (41)

which is not identical to Equation (35), and would induce excessive mass creation during the
simulation if the grid is updated with Equation (35). We can conclude that, since a first-order
approximation is assumed for the grid velocity, high-order temporal accuracy is not attainable for
scalar transport without violating CWC.

4.2. Second-order Adams–Bashforth method

Second-order temporal accuracy for grid movement can be achieved if the grid volume is updated
with Equation (41) and, based on the AB2 method, a second-order accurate approximation for the
grid velocity is given by

ung,i, j = 2

3

xn+1
i, j −xni, j

�t
+ 1

3
un−1
g,i, j +O(�t2)

vng,i, j = 2

3

yn+1
i, j − yni, j

�t
+ 1

3
vn−1
g,i, j +O(�t2)

(42)
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Using Equations (41) and (42), the temporal accuracy of the moving-grid simulation can be
improved to second order, and the associated consistent discretization of the scalar transport
Equation (13) is given by

J−1|n+1
i, j Cn+1

i, j = J−1|ni, jCn
i, j −�t[ 32 (Gn+1/2

�,i+1/2, j (u
nCn)−Gn+1/2

�,i−1/2, j (u
nCn))

− 1
2 (G

n+1/2
�,i+1/2, j (u

n−1Cn−1)−Gn+1/2
�,i−1/2, j (u

n−1Cn−1))]

−�t[ 32 (Gn+1/2
�,i, j+1/2(v

nCn)−Gn+1/2
�,i, j−1/2(v

nCn))

− 1
2 (G

n+1/2
�,i, j+1/2(v

n−1Cn−1)−Gn+1/2
�,i, j−1/2(v

n−1Cn−1))]

+�t[ 32 (Gn+1/2
�,i+1/2, j (u

n
gC

n)−Gn+1/2
�,i−1/2, j (u

n
gC

n))

− 1
2 (G

n+1/2
�,i+1/2, j (u

n−1
g Cn−1)−Gn+1/2

�,i−1/2, j (u
n−1
g Cn−1))]

+�t[ 32 (Gn+1/2
�,i, j+1/2(v

n
gC

n)−Gn+1/2
�,i, j−1/2(v

n
gC

n))

− 1
2 (G

n+1/2
�,i, j+1/2(v

n−1
g Cn−1)−Gn+1/2

�,i, j−1/2(v
n−1
g Cn−1))] (43)

It is straightforward to show that the substitution of a constant concentration field into Equation (43)
yields Equation (41) after subtraction of Equation (37), thereby proving CWC.

Although CWC is achieved in Equation (43), the discretization incurs significant computa-
tional overhead when compared with a typical non-CWC discretization. Consider the naive AB2
discretization of Equation (13), which gives

J−1|n+1
i, j Cn+1

i, j = J−1|ni, jCn
i, j −�t[ 32 ((UnCn)i+1/2, j −(UnCn)i−1/2, j )

− 1
2 ((U

n−1Cn−1)i+1/2, j −(Un−1Cn−1)i−1/2, j )]
−�t[ 32 ((V nCn)i, j+1/2−(V nCn)i, j+1/2)

− 1
2 ((V

n−1Cn−1)i, j+1/2−(V n−1Cn−1)i, j−1/2)]
+�t[ 32 ((Un

g C
n)i+1/2, j −(Un

g C
n)i−1/2, j )

− 1
2 ((U

n−1
g Cn−1)i+1/2, j −(Un−1

g Cn−1)i−1/2, j )]
+�t[ 32 ((V n

g C
n)i, j+1/2−(V n

g C
n)i, j+1/2)

− 1
2 ((V

n−1
g Cn−1)i, j+1/2−(V n−1

g Cn−1)i, j−1/2)] (44)

where the metrics and velocities used to compute the contravariant volume fluxes U and V
are concurrent in time. Although second-order accurate in time, this discretization is not CWC
because substitution of Ci, j =1 does not yield Equation (41) after subtraction of Equation (37).
Furthermore, replacing Equation (41) with the discrete GCL that results from Equation (44) upon
substitution of Ci, j =1 does not conserve grid geometry. However, Equation (44) does yield
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substantial computational savings over Equation (43) because the contravariant mass fluxes (UC
and VC) on the faces can be stored to form the terms on the right-hand side that are evaluated at
time tn−1 in Equation (44). This is not possible in Equation (43), because the metric quantities (i.e.
G()) are always evaluated at time tn+1/2 and therefore the terms containing quantities at time tn−1

must be re-evaluated at each time step. Computational savings can be achieved in Equation (43)
if the metrics that are used to evaluate the terms at tn−1 are evaluated at time tn−1/2 rather than
at time tn+1/2, such that Equation (43) would be given by

J−1|n+1
i, j Cn+1

i, j = J−1|ni, jCn
i, j −�t[ 32 (Gn+1/2

�,i+1/2, j (u
nCn)−Gn+1/2

�,i−1/2, j (u
nCn))

− 1
2 (G

n−1/2
�,i+1/2, j (u

n−1Cn−1)−Gn−1/2
�,i−1/2, j (u

n−1Cn−1))]

−�t[ 32 (Gn+1/2
�,i, j+1/2(v

nCn)−Gn+1/2
�,i, j−1/2(v

nCn))

− 1
2 (G

n−1/2
�,i, j+1/2(v

n−1Cn−1)−Gn−1/2
�,i, j−1/2(v

n−1Cn−1))]

+�t[ 32 (Gn+1/2
�,i+1/2, j (u

n
gC

n)−Gn+1/2
�,i−1/2, j (u

n
gC

n))

− 1
2 (G

n−1/2
�,i+1/2, j (u

n−1
g Cn−1)−Gn−1/2

�,i−1/2, j (u
n−1
g Cn−1))]

+�t[ 32 (Gn+1/2
�,i, j+1/2(v

n
gC

n)−Gn+1/2
�,i, j−1/2(v

n
gC

n))

− 1
2 (G

n−1/2
�,i, j+1/2(v

n−1
g Cn−1)−Gn−1/2

�,i, j−1/2(v
n−1
g Cn−1))] (45)

Although this discretization does not satisfy CWC exactly, it eliminates the number of operations
by a factor of two relative to the CWC version given by Equation (43), and CWC is only slightly
violated as long as it is assumed that the grid motion is small.

5. NUMERICAL EXAMPLES

5.1. Example 1: test of temporal accuracy and convergence rate

Here, we present a simple test case to demonstrate transport due to a moving grid. In this case, the
velocity field is zero everywhere throughout the simulation and the scalar field is only affected by
the grid velocity. We simulate the transport equation derived from the aforementioned conservation
law without considering physical diffusion. This is designed to test the accuracy and consistency
of the proposed moving-grid algorithm which we apply to the curvilinear coordinate Navier–
Stokes code originally developed by Zang et al. [17] and parallelized by Cui and Street [23].
The simulation is conducted in a three-dimensional cubic domain with x ∈[0, L], y∈[0,W ], and
z∈[−D,0], with L=W =H , where z is the vertical coordinate and a grid resolution of 32×32×32
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is employed. Given a uniformly distributed coordinate system x0∈[0,1], y0∈[0,1], and z0∈[0,1],
the coordinates of the grid points in the solution domain are obtained through the mapping function

xi, j = L

(
exp(ax x0,i, j )−1

exp(ax )−1

)
, yi, j =W

(
1− exp(ay y0,i, j )−1

exp(ay)−1

)
zi, j = −H

(
1− exp(azz0,i, j )−1

exp(az)−1

) (46)

where ax =1+sin[2�(z0,i, j + t/T )], ay =1+sin[2�(z0,i, j + t/T )], and az =1+cos[4�(xi, j/L+
t/T )]+cos[4�(yi, j/W + t/T )]. Using this mapping, the grid is distorted in the �-, �-, and 	-
directions and moves periodically with period T . In order to study the influence of using a
non-CWC discretization and the effects of the temporal accuracy on CWC (or lack thereof ) in a
simulation in which only the grid moves and the flow remains static, we simulate different initial
conditions using the grid defined by Equation (46) using three different configurations. In case
I, a consistent discretization is employed by using AB2 for both scalar transport (Equation (43))
and the GCL (Equation (41)), while in case II a consistent discretization is employed by using FE
for both (Equations (38) and (35), respectively). To ensure the desired accuracy, case I employs
AB2 for the grid velocity (Equation (42)), while case II employs FE (Equation (39)). In case
III, the scalar transport equation is discretized using AB2 (Equation (43)), but the GCL and grid
velocities are discretized using FE (Equations (35) and (39), respectively), thereby violating CWC.
The computational grid at representative time steps over one period T is shown in Figure 3, which
demonstrates pronounced three-dimensional grid skewness.

We first demonstrate the difference between CWC and non-CWC cases by starting from a
constant concentration field (C=1.0) in cases I and III. The simulation time step is �t=0.0025T ,
yielding a Courant–Friedrichs–Lewy (CFL) number of roughly 0.35 throughout the simulation,
where the CFL number is calculated with

CFL=Maxi, j

[∣∣∣∣ui, j −ug,i, j
�x

+ vi, j −vg,i, j

�y
+ wi, j −wg,i, j

�z

∣∣∣∣]�t (47)

The concentration fields at representative time steps over one simulation period are shown in
Figure 3, which demonstrates that the CWC case is able to preserve the constant scalar field while
the non-CWC case fails to do so. This is because of the violation of mass conservation due to
the inconsistency of the discretization between the continuity equation and the scalar transport
equation.

In addition to studying the effects of a non-consistent discretization, we also compare the
temporal convergence rates for cases I and II to show that the CWC methods described in this
paper ensure the desired temporal accuracy. The aforementioned simulation setup is used but with
a different initial condition given by

S0,i, j =0.5−0.1tanh

⎡⎣2
√

(xi, j −0.25)2+(yi, j −0.25)2+(zi, j +0.25)2−0.1

0.05

⎤⎦ (48)

The time step sizes we use for comparison are �t=0.004T , 0.002T , 0.001T, and 0.0005T , such
that the maximum CFL number is about 0.3 when �t=0.004T . In order to obtain the convergence
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Figure 3. Snapshots of three-dimensional periodic, highly skewed grid deformation superimposed with
concentration plots starting from a constant concentration field (C0=1.0) at certain time steps from the

CWC case (case I, top) and the non-CWC case (case III, bottom).

rate, we use a reference value for the error calculation, such that

ERRORref=
√√√√∑

i, j (Si, j −Sref,i, j )J−1|i, j∑
i, j Sref,i, j J

−1|i, j (49)

where the reference solution of the concentration field Sref,i, j and the cell volume J−1|i, j are
obtained from a simulation using a time step size of �t=0.00025T . The resulting errors with
different �t are plotted in Figure 4, which shows good agreement between our results and the
theoretical convergence rates.

5.2. Example 2: moving boundary

As a second example, we simulate a flowfield resulting from a moving boundary. In this example,
the velocity field is initially quiescent and the flow is induced by a no-slip condition on the bed at
the bottom boundary, such that, if h represents the departure of the bed from its initial horizontal
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orientation, then the motion of the bed is given by

h

H
=− a

H
cos

[
2�



(x+0.25)

]
sin

(
2�t

T

)
(50)

where H is the mean height of the domain, the oscillation amplitude is a=0.067H , the wavelength
is 
=0.5L , and the period is T . The domain size is L×W ×H with W =0.2L and H =0.6L , and
a grid resolution of 80×16×64 is employed. The grid is stretched in the vertical direction, resulting
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Figure 4. Temporal convergence results of the concentration field for the grid velocity calculated
using the first-order method in case II (◦) and the second-order method in case I (×) along with

theoretical slopes shown by dashed lines.
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Figure 5. Snapshots of the flow field, shown by arrows, induced by the oscillatory boundary for the
simulation of flow over a moving boundary.
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Figure 6. Time evolution of an initially uniform scalar field C=1 and the effects of using a CWC method
(left column) and a non-CWC method (right column).

in a vertical grid spacing �z ranging from 0.002L (the bottom cell) to 0.01L (the top cell). The
total simulation time is 3T and the time step is �t=0.002T , yielding a maximum CFL number
of roughly 0.15, and momentum and scalar transport, along with the GCL, are computed with
the AB2 method (as in case I above). The velocity field induced by the moving bed is depicted
in Figure 5. A uniform scalar field C=1 is initialized and results from the CWC and non-CWC
discretizations are compared in Figure 6, in which the discretization used in case III in Section 5.1
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Figure 7. Time history of the maximum concentration within the domain from t=0 to 3T in the simulation
of flow with a constant concentration field (C=1) over an oscillatory bottom boundary for the CWC case

(dashed line) and the non-CWC case (solid line).

is employed as the non-CWC case. As shown in Figure 6, the difference between these two cases
is obvious, particularly when the grid deformation is large. In the non-CWC case, the error induced
by non-consistency is evident, and the concentration field is not uniform as soon as the simulation
starts. The most significant errors are found at the bottom boundary where cells undergo the largest
deformation. The magnitude of the error grows with time and, as a result, the simulation becomes
unstable and the concentration field grows unbounded, as shown in Figure 7. In contrast, the
consistent case (the left column in Figure 6 and the dashed line in Figure 7) shows a uniform
concentration field throughout the simulation despite strong changes in the grid geometry.

6. CONCLUSION

In this paper we derived the conservation laws for flow, scalar, and momentum with the general
mathematical formulation of transforming from a fixed Cartesian coordinate system to a generalized
moving curvilinear coordinate system. On these types of grids, when flow calculations are carried
out, the continuity equation in physical space for incompressible flow is composed of two parts,
namely the instantaneous continuity equation, which is identical to that on a fixed grid and the
equation governing conservation of cell geometry, which is referred to as the GCL. By employing
the cell geometric operator at half time steps, we present a method in which the GCL can always
be satisfied in a discrete sense under arbitrary multi-dimensional grid movement. Using this
formulation for the discrete GCL then requires that the same formulation be used when discretizing
the transport equations for momentum and scalars if consistency with continuity (CWC) is to
be satisfied. The methods developed in this paper guarantee CWC, which can be shown to be
identically satisfied if substitution of a constant scalar field into the discretized transport equations
yields the same discretization for the continuity equation and the GCL.
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Although we demonstrated that CWC can be satisfied only if the discretization schemes for
scalar transport and the GCL are consistent, satisfying CWC does not guarantee the desired time
accuracy since it can be limited by the time accuracy of the grid velocity. That is, application of
the first-order in time approximation for the grid velocity to both scalar transport and the GCL
ensures CWC, but the resulting time accuracy becomes first-order regardless of the time accuracy
employed for scalar transport and the GCL. Therefore, in order to maintain time accuracy upon
satisfying CWC, the grid velocity must be approximated with a time accuracy that is at least as
high as that which is used for scalar transport and the GCL. We demonstrated this by developing
a second-order accurate grid velocity using AB2 that ensured second-order time accuracy for the
consistent AB2 formulations for scalar transport and the GCL.

The importance of satisfying the CWC condition is demonstrated with two numerical examples
using a three-dimensional Navier–Stokes simulator with a generalized moving curvilinear coordi-
nate grid. The first test case demonstrates the effects of not satisfying CWC under the influence
of scalar transport due to grid motion alone and no fluid velocity. Three methods are employed,
namely first that is CWC and first-order accurate in time, second that is CWC and is second-order
accurate in time, and a third that is second-order accurate in time for scalar transport and first-
order accurate in time for the grid and does not satisfy CWC. The results show that higher-order
temporal accuracy can be achieved by means of the present discretization method for the grid
velocities, and that the non-CWC method induces significant errors due to the excessive mass
creation induced by the non-conservative property of the moving grid. In the second numerical
example, flow is induced only due to an oscillating boundary, and this example is designed to
demonstrate the effects of not satisfying CWC when the grid moves and there is fluid motion
induced by motion of the boundaries. The results indicate significant errors in the scalar concentra-
tion field, particularly near the bottom where the cells are highly skewed. While the CWC method
maintains a uniform concentration field in this test case, the uniform concentration field in the
non-CWC case develops near-bed concentrations that grow exponentially in time.

APPENDIX A

The cell volume obtained by Equation (17)

J−1|ni, j (t)≈

∣∣∣∣∣∣∣∣∣
��xi, j+1/2(t)+��xi, j−1/2(t)

2

��xi+1/2, j (t)+��xi−1/2, j (t)

2

��yi, j+1/2(t)+��yi, j−1/2(t)

2

��yi+1/2, j (t)+��yi−1/2, j (t)

2

∣∣∣∣∣∣∣∣∣
is approximated with a parallelogram, as shown in Figure A1, in which the centered second-order
approximation is used to represent the length of its edges, e.g.

��xi, j (t)= ��xi, j+1/2(t)+��xi, j−1/2(t)

2
+O(�y2) (A1)
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Figure A1. Depiction of a cell with an arbitrary concave shape by gray thick solid lines along with its
parallelogram approximation by thick black solid lines. This shows the cell volume (area) is approximated
by a parallelogram with its edges calculated by central averaging. This second-order approximation is

applied to both the initial cell volume and the volume change in this study.

In the moving grid, with the definition ��()=()i+1/2−()i−1/2 and ��()=() j+1/2−() j−1/2, the
time rate of change of the cell volume dJ−1|ni, j (t)/dt can then be written as

dJ−1|ni, j (t)
dt

≈
∣∣∣∣∣∣
ug,i+1/2, j (t)−ug,i−1/2, j (t) ug,i, j+1/2(t)−ug,i, j−1/2(t)

��yi, j+1/2(t)+��yi, j−1/2(t)

2

��yi+1/2, j (t)+��yi−1/2, j (t)

2

∣∣∣∣∣∣
+
∣∣∣∣∣∣
��xi, j+1/2(t)+��xi, j−1/2(t)

2

��xi+1/2, j (t)+��xi−1/2, j (t)

2

vg,i+1/2, j (t)−vg,i−1/2, j (t) vg,i, j+1/2(t)−vg,i, j−1/2(t)

∣∣∣∣∣∣
≈ �y(t)

��

∣∣∣∣
i, j

(ug,i+1/2, j (t)−ug,i−1/2, j (t))− �x(t)
��

∣∣∣∣
i, j

(vg,i+1/2, j (t)−vg,i−1/2, j (t))

−�y(t)
��

∣∣∣∣
i, j

(ug,i, j+1/2(t)−ug,i, j−1/2(t))

+ �x(t)
��

∣∣∣∣
i, j

(vg,i, j+1/2(t)−vg,i, j−1/2(t)) (A2)
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Now, recalling the volume change formulation in the present study, Equations (30)–(32), the time
rate of change of the cell volume can be written in the finite-volume form as

dJ−1|ni, j (t)
dt

≈Ug,i+1/2, j −Ug,i−1/2, j +Vg,i, j+1/2−Vg,i, j−1/2

=
(

�y(t)
��

∣∣∣∣
i+1/2, j

ug,i+1/2, j (t) −�y(t)
��

∣∣∣∣
i−1/2, j

ug,i−1/2, j (t)

)

−
(

�x(t)
��

∣∣∣∣
i+1/2, j

vg,i+1/2, j (t) −�x(t)
��

∣∣∣∣
i−1/2, j

vg,i−1/2, j (t)

)

−
(

�y(t)
��

∣∣∣∣
i, j+1/2

ug,i, j+1/2(t) −�y(t)
��

∣∣∣∣
i, j−1/2

ug,i, j−1/2(t)

)

+
(

�x(t)
��

∣∣∣∣
i, j+1/2

vg,i, j+1/2(t) −�x(t)
��

∣∣∣∣
i, j−1/2

vg,i, j−1/2(t)

)
(A3)

The difference between Equations (A2) and (A3) arises from the flux face that is used. Equation (A2)
uses the approximated face at the central point (i, j) while Equation (A3) uses the real face
(i±1/2, j±1/2). Therefore, Equation (A2) can be employed if the flow and scalar field are solved
with the finite-difference formulation, while Equation (A3) must be used in the finite-volume
formulation.

APPENDIX B

Using a coordinate transformation from the Cartesian coordinate system (x, y, z) to the generalized
curvilinear coordinate system (�,�,	), the three-dimensional analogue of Equation (18) to update
the cell volume, J−1|i, j,k , is given by

J−1|n+1
i, j,k = J−1|ni, j,k+

∫ tn+1

tn
(Ug,i+1/2, j,k(�)−Ug,i−1/2, j,k(�))

+(Vg,i, j+1/2,k(�)−Vg,i, j−1/2,k(�))+(Wg,i, j,k+1/2(�)−Wg,i, j,k−1/2(�))d�

= J−1|ni, j +(Ũg,i+1/2, j,k−Ũg,i−1/2, j,k)�t+(Ṽg,i, j+1/2,k− Ṽg,i, j−1/2,k)�t

+(W̃g,i, j,k+1/2−W̃g,i, j,k−1/2)�t (B1)

where Wg is the contravariant grid volume flux in the 	-direction. Again, if a constant grid
velocity between tn and tn+1 is assumed, using the intermediate metric quantities (e.g. �y/��), the
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three-dimensional analogues of Equations (30)–(32) are given by

J−1|n+1
i, j,k = J−1|ni, j,k+�t (Un+1/2,n

g,i+1/2, j,k−Un+1/2,n
g,i−1/2, j,k)+�t (V n+1/2,n

g,i, j+1/2,k−V n+1/2,n
g,i, j−1/2,k)

+�t (Wn+1/2,n
g,i, j,k+1/2−V n+1/2,n

g,i, j,k−1/2) (B2)

where

Un+1/2,n
g,i±1/2, j,k =

∣∣∣∣∣∣∣∣∣
�y
��

�y
�	

�z
��

�z
�	

∣∣∣∣∣∣∣∣∣
n+1/2

i±1/2, j,k

ung,i±1/2, j,k+

∣∣∣∣∣∣∣∣∣
�z
��

�z
�	

�x
��

�x
�	

∣∣∣∣∣∣∣∣∣
n+1/2

i±1/2, j,k

vng,i±1/2, j,k

+

∣∣∣∣∣∣∣∣∣
�x
��

�x
�	

�y
��

�y
�	

∣∣∣∣∣∣∣∣∣
n+1/2

i±1/2, j,k

wn
g,i±1/2, j,k (B3)

V n+1/2,n
g,i, j±1/2,k =

∣∣∣∣∣∣∣∣∣
�y
�	

�y
��

�z
�	

�z
��

∣∣∣∣∣∣∣∣∣
n+1/2

i, j±1/2,k

ung,i, j±1/2,k+

∣∣∣∣∣∣∣∣∣
�z
�	

�z
��

�x
�	

�x
��

∣∣∣∣∣∣∣∣∣
n+1/2

i, j±1/2,k

vng,i, jn±1/2,k

+

∣∣∣∣∣∣∣∣∣
�x
�	

�x
��

�y
�	

�y
��

∣∣∣∣∣∣∣∣∣
n+1/2

i, j±1/2,k

wn
g,i, j±1/2,k (B4)

and

Wn+1/2,n
g,i, j,k±1/2 =

∣∣∣∣∣∣∣∣∣
�y
��

�y
��

�z
��

�z
��

∣∣∣∣∣∣∣∣∣
n+1/2

i, j,k±1/2

ung,i, j,k±1/2+

∣∣∣∣∣∣∣∣∣
�z
��

�z
��

�x
��

�x
��

∣∣∣∣∣∣∣∣∣
n+1/2

i, j,k±1/2

vng,i, j,k±1/2

+

∣∣∣∣∣∣∣∣∣
�x
��

�x
��

�y
��

�y
��

∣∣∣∣∣∣∣∣∣
n+1/2

i, j,k±1/2

wn
g,i, j,k±1/2 (B5)
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where ug,vg, and wg are grid velocities in the x-, y-, and z-directions, respectively, Ug,Vg,
and Wg are the contravariant volume fluxes in the �-, �-, and 	-directions, respectively, and each
determinant represents the intermediate surface component at t= tn+1/2 normal to its associated
grid velocity.
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